Кулинарный сайт - Sushivenev

Аминокислоты и биосинтез белка. Аминокислоты с разветвленной цепью: почему вы должны включить их в свою фитнес-программу! Аминокислоты с разветвлённой цепью влияют на то, каким образом вы сжигаете жировую ткань

Проработав эти темы, Вы должны уметь:

  1. Охарактеризовать приведенные ниже понятия и объяснить соотношения между ними:
    • полимер, мономер;
    • углевод, моносахарид, дисахарид, полисахарид;
    • липид, жирная кислота, глицерин;
    • аминокислота, пептидная связь, белок;
    • катализатор, фермент, активный центр;
    • нуклеиновая кислота, нуклеотид.
  2. Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  3. Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  4. Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  5. Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  6. Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  7. Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  8. Сравнить дыхание и брожение.
  9. Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  10. Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  11. Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  12. Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  13. Перечислить этапы белкового синтеза на уровне рибосом.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК.

Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
АГТАЦЦГАТАЦТЦГАТТТАЦГ...
Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
ТАЦТГГЦТАТГАГЦТАААТГ...

Тип 2. Кодирование белков.

Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
АААЦАААЦУГЦГГЦУГЦГААГ

С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
АЦГЦЦЦАТГГЦЦГГТ...

По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
УГЦГГГУАЦЦГГЦЦА...

Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
Цистеин-глицин-тирозин-аргинин-пролин-...

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
  • Тема 5. "Фотосинтез." §16-17 стр. 44-48
  • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
  • Тема 7. "Генетическая информация." §14-15 стр. 39-44

Виктор Трибунский

Аминокислоты являются строительными блоками мышечного протеина. Между тем, получение адекватного количества аминокислот представляет собой тяжелую задачу для тренирующихся, поскольку тренировки сжигают их очень быстро. А если интенсивно тренирующийся атлет не получит необходимых аминокислот, то это может замедлить или полностью остановить всякий тренировочный прогресс.

Потреблять аминокислоты лучше всего в свободной форме или в форме разветвленных цепочек. Такие аминокислоты не требуют переваривания и сразу же всасывают в кровоток, после чего поступают к мышечным клеткам. Кроме того, аминокислоты с разветвленной цепью (BCAA) удовлетворяют потребность организма в азоте, - 70 процентов от суточной нормы.

Различия между незаменимыми и заменимыми аминокислотами

Человеческий организм не умеет синтезировать незаменимые аминокислоты. В связи с этим их необходимо получать вместе с полноценными протеиновыми или неполноценными овощными продуктами. Существует девять незаменимых аминокислот: гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, триптофан, треонин и валин. Заменимые аминокислоты могут синтезироваться самим организмом из витаминов и других аминокислот.

Между тем, термин «заменимые аминокислоты» не означает, что они необязательны. Они важны для нормального метаболизма, а некоторые из них, такие как глютамин, крайне необходимы при заболеваниях или травмах. На сегодняшний день насчитывается 12 заменимых аминокислот: аланин, аргинин, аспарагиновая кислота, цистеин, цистин, глютаминовая кислота, глютамин, глицин, гидроксипролин, пролин, серин и тирозин.

Незаменимые аминокислоты с разветвленной цепью (BCAA) крайне важны для атлетов, поскольку они метаболизируются не в печени, а в мышцах. Это работает следующим образом: как только протеин расщепляется на индивидуальные аминокислоты в результате переваривания, эти самые аминокислоты используются либо для построения новых протеинов, либо сжигаются в качестве топлива ради производства энергии.

На сегодняшний день известна 21 аминокислота, которые делятся на две группы:

Незаменимые

Гистидин
Изолейцин
Лейцин
Лизин
Метионин
Фенилаланин
Триптофан
Треонин
Валин

Заменимые

Аланин
Аргинин
Аспарагиновая кислота
Цистеин
Цистин
Глютаминовая кислота
Глютамин
Глицин
Гидроксипролин
Пролин
Серин
Тирозин

Аминокислоты с разветвленной цепью и бодибилдинг

Бодибилдеры стараются избегать уменьшения мышечных размеров и силы в результате замедления синтеза мышечного протеина и его разрушения. Безусловно, адекватный уровень BCAA не превратит вас в сверхчеловека (хотя высокие целевые дозы могут приблизить вас к этому), однако, он позволит вам избежать некоторых негативных эффектов дефицита BCAA, включая замедленное восстановление и тренировочную стагнацию.

Если вы уже обладаете адекватным уровнем в результате правильного питания, то действительно заметите положительные эффекты. Однако помимо потребления адекватного количества протеина, вам необходимо получать адекватный объем качественных калорий, а также хорошо отдыхать. Потребляя соответствующее количество калорий и углеводов, вы сбережете ценные аминокислоты с разветвленной цепью.

Чем больше гликогена в мышцах, тем вероятнее, что пул BCAA будет использован для мышечного роста в отличие от окисления для получения энергии. Кроме того, способствовать использованию этих аминокислот в построении мышц будет также хороший отдых и восстановление. Соблюдение даже этих моментов поможет вам повысить тренировочные результаты, хотя мы еще даже не успели обсудить настоящие положительные эффекты аминокислот с разветвленной цепью!

Положительные эффекты аминокислот с разветвленной цепью

Теперь перейдем к самому главному. Что дает нам потребление пищевых добавок BCAA? Исследования показывают, что прием BCAA может дать вам довольно серьезные положительные эффекты, включая следующие:

Ускоренное восстановление. Вероятно самый ценный положительный эффект для интенсивно тренирующихся атлетов - это ускорение метаболического восстановления в результате приема аминокислот с разветвленной цепью. Большинство атлетов ощущают значительное ослабление послетренировочной мышечной болезненности вскоре после того, как начинают использовать пищевые добавки BCAA.

Даже если не учитывать других преимуществ потребления , данный эффект ускорения восстановления вызванных тренировками мышечных повреждений (не забывайте, что мышцы растут только тогда когда они получают микроповреждения) означает ускоренный рост мышц и увеличение силы. Благодаря ускоренному восстановлению вы можете тренироваться интенсивнее и чаще, что в свою очередь поможет реализовать поставленные цели намного быстрее.

Выносливость. BCAA могут служить донором азота в образовании L-аланина, который обеспечивает организм глюкозой после истощения запасов гликогена. Скорее всего, мысль об экономии гликогена вызывает у вас ассоциацию с высокоуглеводными диетами, однако, аминокислоты с разветвленной цепью и в этом доказали свою ценность.

В ходе четырехнедельного эксперимента японские ученые обеспечивали тренировавшихся до мышечного истощения крыс добавкой аминокислот с разветвленной цепью или плацебо. В итоге группа BCAA показала сохранение запасов гликогена в печени и скелетных мышцах во время тренировок. Это означает, что подопытные животные могли тренироваться с повышенной интенсивностью более длительный период времени. Таким образом, потребление аминокислот с разветвленной цепью позволит вам поддерживать тренировочную интенсивность и выносливость, даже если обычное питание не обеспечивает высокого уровня энергии. Этот эффект должен заинтересовать всех тех, кто когда-либо сидел на низкоуглеводной или низкокалорийной диете в течение длительного времени!

Стимуляция синтеза протеина. Оказывается, что BCAA могут самостоятельно стимулировать синтез мышечного протеина. Другими словами, эти аминокислоты способны вызывать мышечный рост даже в отсутствии тренировок с отягощениями! Исследования показывают, что прием аминокислот с разветвленной цепью повышает уровни таких гормонов, как тестостерон, гормон роста и инсулин. А это, между прочим, сильные анаболические гормоны.

Кроме того, исследования также показывают, что в условиях сильного стресса, например, при выполнении подъемов в гору в течение 21 дня, потребление BCAA (10 грамм в день) показало увеличение мышечной массы, в тот время как испытуемые, получавшие плацебо, не показали никаких изменений. Важный момент заключается в том, что люди, получавшие аминокислоты с разветвленой цепью, сумели нарастить мышечную массу в экстремальных условиях без анаболического стимула, такого как тренинг с отягощениями.

Стимуляция сжигания жира. Потребление BCAA активирует механизмы сжигания висцерального жира. Расположенный глубоко в абдоминальной области под подкожным жиром, висцеральный жир поддается сжиганию в результате ограничивающих калораж диет с очень большим трудом. В ходе одного исследования 25 участвующих в соревнованиях борцов были поделены на три диетарные группы: диета с высоким содержанием аминокислот с разветвленной цепью, диета с низким содержанием аминокислот с разветвленной цепью и контрольная диета. Испытуемые соблюдали свои диеты в течение 19 дней.

Результаты показали, что группа высокого потребления BCAA потеряла жира больше всех - 17,3 процента в среднем. Большая часть потерянного жира была как раз в абдоминальной области. Таким образом, BCAA способствуют развитию точеного пресса.

В ходе еще одного исследования ученые разделили испытуемых-альпинистов на две группы: группу аминокислот с разветвленной цепью (BCAA) и контрольную группу. По результатам эксперимента обе группы показали снижение веса, однако, группа BCAA сумела набрать мышечную массу и одновременно сжечь подкожный жир, в то время как другая потеряла мышцы.

Одна из теорий о том, каким же образом BCAA обеспечивают свои эффекты сжигания жира и построения мышц, заключается в следующем. Во время выполнения тренировки организм обнаруживает высокий уровень BCAA в крови, а это в свою очередь является признаком чрезмерного разрушения мышц. В связи с этим он останавливает мышечное разрушение и начинает использовать в качестве топлива преимущественно подкожный жир.

В то же время дополнительный объем аминокислот с разветвленной цепью в крови стимулирует инсулин, в результате чего BCAA транспортируются прямо к мышцам. Таким образом, человек сжигает подкожный жир и одновременно наращивает мышечную массу. И если чутье нас не обманывает, то для того, чтобы максимизировать жиросжигающий эффект аминокислот с разветвленной цепью, вам необходимо ограничить потребление углеводов за два часа до тренировочной сессии.

Улучшение иммунной функции. Тренироваться нелегко, если вы заболели, не говоря уже о мышечном росте. Более того, еще сложнее вернуться к тренировкам после простуды, не потеряв при этом силу и размеры. Когда вы тренируетесь с высокой интенсивностью или высоким объемом, то рискуете ослабить иммунитет и просто-напросто заболеть. Однако потребляя аминокислоты с разветвленной цепью, вы можете обратить потерю глютамина, который является важным соединением для иммунной системы. Кроме того, BCAA способствуют профилактике катаболизма, что в свою очередь способствует ускорению восстановления и ослабляет негативные эффекты тренировок на организм.

Антикатаболические эффекты. По всей видимости, аминокислоты с разветвленной цепью проводят большую часть своих анаболических эффектов через антикатаболическую активность. В двух словах, они подавляют использование мышечного протеина в качестве топлива и тем самым предотвращают его разрушение. Отчасти это происходит в результате того, что они жертвуют собою в качестве топлива.

Между тем, в результате ослабления разрушений мышечного протеина во время тренировок ускоряется синтез протеина, и вы получаете больше мышечной массы! В ходе одного исследования с участием людей, страдающих ожирением, которые соблюдали ограничивающую диету, потребление аминокислот с разветвленой цепью подняло анаболизм и экономию азота, в результате чего испытуемые сжигали больше подкожного жира вместо сухой мышечной массы, сохраняя тем самым мышечный протеин.

Источники аминокислот с разветвленной цепью

Молочные продукты и красное мясо содержат большое количество BCAA, хотя они имеются во всех содержащих протеин продуктах. Пищевые добавки сывороточного и яичного протеина являются альтернативным источником BCAA. Кроме того, следует отметить, что пищевые добавки BCAA обеспечивают вас аминокислотами лейцин, изолейцин и валин.

Необходимый объем аминокислот с разветвленной цепью

Большинство диет обеспечивают адекватный объем BCAA для большинства людей, который составляет примерно 55-145 миллиграмм на килограмм веса тела. Интенсивно тренирующиеся атлеты часто принимают пять грамм лейцина, четыре грамма валина и два грамма изолейцина в день для, того чтобы предотвратить потерю мышц и ускорить их рост.

Узнайте больше о пользе аминокислот:

Объединение аминокислот через пептидные связи создает линейную полипептидную цепь, которая называется первичной структурой белка

Учитывая, что в синтезе белков принимает участие 20 аминокислот и средний белок содержит 500 аминокислотных остатков, то можно говорить о невообразимом количестве потенциально возможных белков. В организме человека обнаружено около 100 тысяч различных белков.

К примеру, 2 аминокислоты (аланин и серин) образуют 2 пептида Ала-Сер и Сер-Ала; 3 аминокислоты дадут уже 6 вариантов трипептида; 20 аминокислот – 1018 различных пептидов длиной всего 20 аминокислот (при условии, что каждая аминокислота используется только один раз).

Самый большой из известных в настоящее время белков - титин - является компонентом саркомеров миоцита, молекулярная масса его различных изоформ находится в интервале от 3000 до 3700 кДа. Титин камбаловидной мышцы человека состоит из 38138 аминокислот.

Первичная структура белков, т.е. последовательность аминокислот в нем, программируется последовательностью нуклеотидов в ДНК. Выпадение, вставка, замена нуклеотида в ДНК приводит к изменению аминокислотного состава и, следовательно, структуры синтезируемого белка.

Участок белковой цепи длиной в 6 аминокислот (Сер-Цис-Тир-Лей-Глу-Ала)
(пептидные связи выделены желтым фоном, аминокислоты - рамкой)

Если изменение последовательности аминокислот носит не летальный характер, а приспособительный или хотя бы нейтральный, то новый белок может передаться по наследству и остаться в популяции. В результате возникают новые белки с похожими функциями. Такое явление называется полиморфизм белков.

Для многих белков обнаруживается ярко выраженный консерватизм структуры. Например, гормон инсулин у человека отличается от бычьего только на три аминокислоты, от свиного – на одну аминокислоту (аланин вместо треонина).

Последовательность и соотношение аминокислот в первичной структуре определяет формирование вторичной , третичной и четвертичной структур.

Генотипическая гетерогенность

В результате того, что каждый ген у человека имеется в двух копиях (аллелях) и может подвергаться мутациям (замена, делеция, вставка) и рекомбинациям, серьезно не затрагивающим функцию кодируемого белка, то возникает полиморфизм генов и, соответственно, полиморфизм белков. Возникают целые семейства родственных белков, обладающих схожими, но неодинаковыми свойствами и функцией.

Например, существует около 300 разных типов гемоглобина , часть из них является необходимой на разных этапах онтогенеза: например, HbP – эмбриональный, образуется в первый месяц развития, HbF – фетальный, необходим на более поздних сроках развития плода, HbA и HbA2 – гемоглобин взрослых. Разнообразие обеспечивается полиморфизмом глобиновых цепей: в гемоглобине P присутствуют 2ξ и 2ε цепи, в HbF – 2α- и 2γ- цепи, в HbА – 2α- и 2β-цепи, в HbА2 – 2α- и 2δ-цепи.

При серповидноклеточной анемии в шестом положении β-цепи гемоглобина происходит замена глутаминовой кислоты на валин. Это приводит к синтезу гемоглобина S (HbS) – такого гемоглобина, который в дезоксиформе полимеризуется и образует тяжи. В результате эритроциты деформируются, приобретают форму серпа (банана), теряют эластичность и при прохождении через капилляры разрушаются. Это в итоге приводит к снижению оксигенации тканей и их некрозу.

Группы крови АВ0 зависят от строения особого углевода на мембране эритроцитов. Различия в строении углевода обусловлены разной специфичностью и активностью фермента гликозил-трансферазы , способного модифицировать исходный олигосахарид. Фермент имеет три варианта и осуществляет присоединение к олигосахариду мембран эритроцитов либо N-ацетилгалактозы, либо галактозы, либо фермент не присоединяет дополнительные сахаридные группы (группа 0).
В результате лица с группой крови А0 на эритроците имеют олигосахарид с присоединенным к нему N-ацетилгалактозамином, с группой крови В0 – олигосахарид с галактозой, 00 – имеют только "чистый" олигосахарид, с группой крови АВ – олигосахарид и с N-ацетилгалактозамином, и с галактозой.

Строение аминокислот

Аминокислоты - гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы : аминогруппу -NH 2 и карбоксиль­ную группу -СООН, связанные с углеводородным радикалом.

Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа -NH 2 определяет основные свой­ства аминокислот , т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа -СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений . Следо вательно, аминокислоты - это амфотерные орга­нические соединения .

Со щелочами они реагируют как кислоты:

С сильными кислотами как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они рас­творимы в воде и нерастворимы в эфире. В зависи­мости от радикала R- они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие . Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым , т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин.

Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки -NH-CO- , например:

Получаемые в результате такой реакции высо­комолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полиамидов .

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды α-аминокислот называются пепти­дами . В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы -NH-CO- на­зывают пептидными .

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита : α, β, γ и т. д. Так, 2-аминобутановую кислоту можно на звать также α-аминокислотой:

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Белки

Белки - это высокомолекулярные (молеку­лярная масса варьируется от 5-10 тыс. до 1 млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

Белки также называют протеинами (греч. «протос» - первый, важный). Число остатков амино­кислот в молекуле белка очень сильно колеблется и иногда достигает несколь­ких тысяч. Каждый белок об­ладает своей присущей ему последовательностью распо­ложения аминокислотных остатков.

Белки выполняют разнообразные биологичес­кие функции : каталитические (ферменты), регуля­торные (гормоны), структурные (коллаген, фибро­ин), двигательные (миозин), транспортные (гемо­глобин, миоглобин), защитные (иммуноглобули­ны, интерферон), запасные (казеин, альбумин, глиадин) и другие.

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Белки - основа биомембран, важнейшей состав­ной части клетки и клеточных компонентов. Они играют ключевую роль в жиз­ни клетки, составляя как бы материальную основу ее химической деятельности.

Исключительное свойство белка - самоорганизация структуры , т. е. его способность самопроизвольно создавать определенную, свойственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им различных функций и многое дру­гое) связана с белковыми веществами. Без белков невозможно представить себе жизнь.

Белки - важнейшая составная часть пищи че­ловека и животных, поставщик необходимых ами­нокислот .

Строение белков

В пространственном строении белков большое значение имеет характер радикалов (остатков) R- в молекулах аминокислот. Неполярные радикалы аминокислот обычно располагаются внутри макро­молекулы белка и обусловливают гидрофобные взаимодействия ; полярные радикалы , содержащие ионогенные (образующие ионы) группы, обычно находятся на поверхности макромолекулы белка и характеризуют электростатические (ионные) вза­имодействия . Полярные неионогенные радикалы (например, содержащие спиртовые ОН-группы, амидные группы) могут располагаться как на по­верхности, так и внутри белковой молекулы. Они участвуют в образовании водородных связей .

В молекулах белка а-аминокислоты связаны между собой пептидными (-СО-NH-) связями:

Построенные таким образом полипептидные це­пи или отдельные участки внутри полипептидной цепи могут быть в некото­рых случаях дополнительно связаны между собой дисуль­фидными (-S-S-) связями или, как их часто называют, дисульфидными мостиками .

Большую роль в создании структуры белков играют ион­ные (солевые) и водородные связи , а также гидрофобное взаимодействие - особый вид контактов между гидрофоб­ными компонентами молекул белков в водной среде. Все эти связи имеют различную прочность и обеспечивают образование сложной, большой молекулы белка.

Несмотря на различие в строении и функциях белковых веществ, их элементный состав колеб­лется незначительно (в % на сухую массу): угле­рода - 51-53; кислорода - 21,5-23,5; азота - 16,8-18,4; водорода - 6,5-7,3; серы - 0,3-2,5.

Некоторые белки содержат в небольших количе­ствах фосфор, селен и другие элементы. Последовательность соединения аминокислот­ных остатков в полипептидной цепи получила на­звание первичной структуры белка. Белковая молекула может состоять из одной или из нескольких полипептидных цепей, каждая из которых содержит различное число аминокис­лотных остатков. Учитывая число их возможных комби­наций, можно сказать, что разнообразие белков почти безгранично, но не все из них существуют в природе. Общее число различных ти­пов белков у всех видов жи­вых организмов составляет 10 11 -10 12 . Для белков, строение которых отлича­ется исключительной сложностью, кроме первич­ной, различают и более высокие уровни структур­ной организации: вторичную, третичную, а иногда и четвертичную структуры.

Вторичной структурой обладает большая часть белков, правда, не всегда на всем протяжении полипептидной цепи. Полипептидные цепочки с определенной вторичной структурой могут быть по-разному расположены в пространстве.

В формировании третичной структуры , кроме водородных связей, большую роль играют ион­ное и гидрофобное взаимодействия. По характеру «упаковки» белковой молекулы различают глобу­лярные, или шаровидные, и фибриллярные, или нитевидные, белки.

Для глобулярных белков более характерна α-спиральная структура, спирали изогнуты, «свер­нуты». Макромолекула имеет сферическую форму. Они растворяются в воде и солевых растворах с об­разованием коллоидных систем. Большинство бел­ков животных, растений и микроорганизмов отно­сится к глобулярным белкам.


- последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами - пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, - 1020. Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию - транспорт кислорода; в таких случаях у человека развивается заболевание - серповидноклеточная анемия.

Вторичная структура - упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура - укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия.

В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов - поверхностных белков нервных клеток.

Для фибриллярных белков более характерна нитевидная структура. Они, как правило, не рас­творяются в воде. Фибриллярные белки обычно выполняют структурообразующие функции. Их свойства (прочность, способность растягиваться) за­висят от способа упаковки полипептидных цепо­чек. Примером фибриллярных белков служат мио­зин, кератин. В ряде случаев отдельные субъ­единицы белка с помощью во­дородных связей, электроста­тического и других взаимо­действий образуют сложные ансамбли. В этом случае об­разуется четвертичная струк­тура белков .

Примером белка с четвер­тичной структурой служит гемоглобин крови. Только с такой структурой он выполняет свои функции - связывание кислорода и транспортировка его в ткани и органы. Однако следует отметить, что в организации бо­лее высоких структур белка исключительная роль принадлежит первичной структуре.

Классификация белков

Существует несколько классификаций белков:

По степени сложности (простые и сложные).

По форме молекул (глобулярные и фибрилляр­ные белки).

По растворимости в отдельных растворителях (водорастворимые, растворимые в разбавлен­ных солевых растворах - альбумины, спирто­растворимые - проламины, растворимые в раз­бавленных щелочах и кислотах - глутелины).

По выполняемым функциям (например, запас­ные белки, скелетные и т. п.).

Свойства белков

Белки - амфотерные электролиты . При опреде­ленном значении pH среды (оно называется изо­электрической точкой) число положительных и от­рицательных зарядов в молекуле белка одинаково. Это одно из основных свойств белка. Белки в этой точке электронейтральны, а их растворимость в во­де наименьшая. Способность белков снижать рас­творимость при достижении электронейтральности их молекул используется для выделения из раство­ров, например, в технологии получения белковых продуктов.

Гидратация . Процесс гидратации означает свя­зывание белками воды, при этом они проявля­ют гидрофильные свойства: набухают, их масса и объ­ем увеличиваются. Набуха­ние отдельных белков за­висит исключительно от их строения. Имеющиеся в со­ставе и расположенные на поверхности белковой ма­кромолекулы гидрофильные амидные (-СО-NH-, пеп­тидная связь), аминные (-NH 2) и карбоксильные (-СООН) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности моле­кулы. Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаж­дению, а следовательно, способствует устойчиво­сти растворов белка. В изоэлектрической точке белки обладают наименьшей способностью свя­зывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрега­ция белковых молекул происходит и при их обе­звоживании с помощью некоторых органических растворителей, например, этилового спирта. Это приводит к выпадению белков в осадок. При из­менении рН среды макромолекула белка стано­вится заряженной, и его гидратационная способ­ность меняется.

При ограниченном набухании концентрирован­ные белковые растворы образуют сложные систе­мы, называемые студнями . Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохра­нять свою форму. Глобуляр­ные белки могут полностью гидратироваться, растворяться в воде (например, белки молока), образуя растворы с невысокой кон­центрацией. Гидрофильные свойства белков, т. е. их способность набухать, образовывать студни, стабилизировать суспензии, эмульсии и пены, имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, по­строенным в основном из молекул белка, является цитоплазма - сырая клейковина, выделенная из пшеничного теста; она содержит до 65 % воды.

Различная гидрофильность клейковинных бел­ков - один из признаков, характеризующих ка­чество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Ги­дрофильность белков зерна и муки играет боль­шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебо­пекарном производстве, представляет собой набух­ший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация белков . При денатурации под вли­янием внешних факторов (температуры, механиче­ского воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третич­ной и четвертичной структур белковой макромолекулы, т. е. ее нативной простран­ственной структуры. Первич­ная структура, а следователь­но, и химический состав белка не меняются. Изменяются физические свой­ства: снижается растворимость, способность к ги­дратации, теряется биологическая активность. Меняется форма белковой макромолекулы, проис­ходит агрегирование. В то же время увеличивает­ся активность некоторых химических групп, об­легчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизу­ется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков , степень которой зависит от температуры, продол­жительности нагрева и влажности. Это необходи­мо помнить при разработке режимов термообра­ботки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы те­пловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хле­ба, получении макаронных изделий. Денатура­ция белков может вызываться и механическим воздействием (давлением, растиранием, встряхи­ванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти при­емы широко используются в пищевой и биотех­нологии.

Пенообразование . Под процессом пенообразова­ния понимают способность белков образовывать высококонцентрированные системы «жидкость - газ», называемые пенами. Устой­чивость пены, в которой бе­лок является пенообразовате­лем, зависит не только от его природы и от концентрации, но и от температуры. Белки в качестве пенообразо­вателей широко используются в кондитерской про­мышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые ка­чества.

Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых про­дуктов. Для пищевой промышленности можно вы­делить два важных процесса:

1) гидролиз белков под действием ферментов;

2) взаимодействие аминогрупп белков или амино­кислот с карбонильными группами восстанавли­вающих сахаров.

Под влиянием ферментов протеаз, катализиру­ющих гидролитическое расщепление белков, по­следние распадаются на более простые продукты (поли- и дипептиды) и в конечном итоге на ами­нокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

Гидролиз белков . Реакцию гидролиза с образо­ванием аминокислот в общем виде можно записать так:

Горение. Белки горят с образованием азота, углекислого газа и воды, а также некоторых дру­гих веществ. Горение сопровождается характер­ным запахом жженых перьев.

Цветные реакции . Для качественного определе­ния белка используют следующие реакции:

1. Денатурация – процесс нарушения естественной структуры белка (разрушение вторичной, третичной, четвертичной структуры).

2. Гидролиз — разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот.

3. Качественные реакции белков:

· биуретовая;

Биуретовая реакция – фиолетовое окрашивание при действии солей меди (II) в щелочном растворе. Такую реакцию дают все соединения, содержащие пептидную связь, при которой происходит взаимо­действие слабощелочных растворов белков с раствором сульфата меди (II) с образованием комплексных соединений между ионами Cu 2+ и полипептидами. Реакция сопровождается по­явлением фиолетово-синей окраски.

· ксантопротеиновая;

Ксантопротеиновая реакция – появление желтого окрашивания при действии концентрированной азотной кислоты на белки, содержащие остатки ароматических аминокислот (фенилаланина, тирозина), при которой происходит взаимодействие ароматических и гетероатом­ных циклов в молекуле белка с концентриро­ванной азотной кислотой, сопровождающееся появлением желтой окраски.

· реакция определения серы в белках.

Цистеиновая реакция (для белков, содержащих серу) — кипячение раствора белка с ацетатом свинца(II) с появлением черного окрашивания.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!