Кулинарный сайт - Sushivenev

Проблема электромеханического сопряжения. Электромеханическое сопряжение

Связь между возбуждением и сокращением мышечного волокна описана А.Хаксли (1959). Осуществляется при помощи системы поперечных трубочек поверхностной мембраны (Т-системы) и внутриволоконного саркоплазматического ретикулума. Деполяризация, вызываемая потенциалом действия, распространяется на Т - систему и стимулирует освобождение ионов кальция из полостей ретикулума. Взаимодействие ионов кальция с регуляторным белком тропонином С приводит к активации системы сократительных белков актина и миозина. Механизм генерации потенциала действия принципиально не отличается от этого процесса в нейроне. Скорость его распространения по мембране мышечного волокна 3 - 5 м/c.

5. Режимы и виды сокращения мышц

Режимы сокращения мышцы: изотонический (когда мышца укорачивается при неизменном внутреннем напряжении, например, при нулевой массе поднимаемого груза) и изометрический (при этом режиме мышца не укорачивается, а лишь развивает внутреннее напряжение, что бывает при нагрузке неподъёмным грузом). Ауксотонический режим - при сокращении мышцы с нагрузкой вначале в мышце возрастает напряжение без укорочения (изометрический режим), затем, когда напряжение преодолевает массу поднимаемого груза, укорочение мышцы происходит без дальнейшего роста напряжения (изотонический режим).

Различают виды сокращений: одиночное и тетаническое. Одиночное сокращение возникает при действии на мышцу одиночного нервного импульса или однократного толчка тока. В миоплазме мышцы происходит кратковременный подъём концентрации кальция, сопровождаемый кратковременной работой - тягой миозиновых мостиков, сменяющейся покоем. В изометрическом режиме одиночное напряжение начинается через 2 мс после развития потенциала действия, причём напряжению предшествует кратковременное и незначительное латентное расслабление.

Тетанус - это сложное сокращение, возникающее при стимуляции с частотой выше, чем длительность одиночного мышечного сокращения. Тетанус бывает зубчатый, если мышца совершает незначительные колебания на высоте амплитуды сокращения, и гладкий - при постоянном во времени сокращении. При относительно малой частоте раздражений возникает зубчатый тетанус, при большой частоте - гладкий тетанус. Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

В естественных условиях мышечные волокна работают в режиме одиночного сокращения только тогда, когда длительность интервала между разрядами мотонейронов равна или превышает длительность одиночного сокращения иннервируемых данным мотонейроном мышечных волокон. В режиме одиночного сокращения мышца способна работать длительное время без утомления, совершая при этом минимальную работу. При увеличении частоты разрядов развивается тетаническое сокращение. При зубчатом тетанусе происходит непрерывное нарастание силы сокращения и выполняемой работы. Во время гладкого тетануса мышечное напряжение не изменяется, а поддерживается на достигнутом уровне. В таком режиме мышца человека работает при развитии максимальных изометрических усилий. Работа мышцы (А) измеряется произведением массы груза (Р) и расстояния (H), на которое этот груз перемещается.

Работа может быть динамической (преобладают изотонические режимы сокращения) или статической. Она может быть преодолевающей и уступающей.

Расслабление мышцы.

Восстановление потенциала покоя мембраны прекращает поступление из саркоплазматического ретикулума ионов кальция и дальнейший сократительный процесс. Кальций в миоплазме активирует Са-АТФ-азу, кальциевый насос осуществляет активный перенос этого иона в саркоплазматический ретикулум. Возврат мышцы в исходное, растянутое положение определяется массой костей скелета, связанных с данными мышцами и создающими растягивающее усилие после прекращения процесса сокращения. Вторым моментом является упругость мышцы, которая преодолевается в момент сокращения. Структурной основой упругости мышцы являются:

Поперечные мостики.

Участки прикрепления концов миофибрилл к сухожильным элементам мышечного волокна.

Наружные соединительнотканные элементы мышцы и её волокна.

Места прикрепления мышц к костям.

Продольная система саркоплазматического ретикулума.

Сарколемма мышечного волокна.

Капиллярная сосудистая сеть мышцы.

Электромеханическое сопряжение – то цикл последовательных процессов, который начинается с возникновения потенциала действия на сарколемме и заканчивается сократительным ответом мышцы.

Общепринятой моделью мышечного сокращения является модель скользящих нитей, согласно которой сократительный процесс происходит следующим образом.

Под действием нервного импульса в сарколемме открываются натриевые каналы, и ионы Na + входят в мышечную клетку, вызывая возбуждение (деполяризацию) сарколеммы.

Электрохимически процесс возбуждения передается на саркоплазматической ретикулум. В результате повышается проницаемость этой мембранной структуры для ионов Са ++ и происходит их выброс в цитоплазматическую жидкость (саркоплазму), заполняющую мышечное волокно. Повышение концентрации Са ++ с 10 –7 до 10 –5 моль/л стимулирует циклическую работу миозиновых «мостиков». «Мостик» связывается с актином и тянет его к центру А -зоны, в область расположения миозиновых нитей, перемещая на расстояние 10–12 нм. Затем он отщепляется от актина, связывается с ним в другой точке и опять подтягивает в нужную сторону. Непрерывное движение актиновных нитей происходит в результате поочередной работы «мостиков». Частота циклов их движений, по-видимому, регулируется в зависимости от нагрузки на мышцу и может достигать 1000 Гц. «Мостики» обладают АТФ-азной активностью, стимулируют расщепление АТФ и используют высвобождающуюся при этом энергию для своей работы.

Возвращение мышцы к исходному состоянию обусловлено обратными переходами ионов Са ++ из саркоплазмы в ретикулум вследствие работы кальциевых насосов и тем, что К + пассивно выходит из мышечной клетки, вызывая реполяризацию саркоплемы.

Механическое усилие, развиваемое мышцей при сокращении, зависит от величины еë поперечного сечения, от начальной длины волокон и ряда других факторов. Сила мышцы, приходящаяся на 1 см 2 её поперечного сечения, называется абсолютной мышечной силой. Для человека она изменяется в пределах 50–100 . Сила одних и тех же мышц человека зависит от ряда физиологических условий: возраста, пола, тренированности и т. д. Следует также отметить. Что в разных мышечных клетках организма процесс сопряжения происходит несколько по-разному. Например, задержка начала сокращения по отношению к началу возбуждения сарколеммы в скелетных мышцах составляет 20 мс, в сердечной – несколько больше (до 100 мс).


* Если молекула или часть молекулы имеют неравный нулю дипольный момент или электрический заряд, то их называют полярными

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Регулирующая роль ионов кальция в мышечном сокращении

Как сказано выше, для возникновения сокращения скелетной мышцы ионы кальция должны поступить к миофибриллам из саркоплазматической сети. Так называют систему пузырьков и цистерн, отделенных мембранами от остальной саркоплазмы (рисунок 6). СПС занимает примерно 10% объема мышечного волокна, а суммарная площадь ее мембран в миоците приблизительно в 100 раз больше поверхности сарколеммы (мембраны саркомеров). СПС служит кальциевым депо в мышечном волокне — содержание в ней ионов кальция огромно. Следовательно, на мембране СПС поддерживается колоссальный градиент Са 2+ , но в покое она совершенно непроницаема для этого иона.

Выход кальция из СПС прекращается сразу вслед за реполяризациией сарколеммы, но миофибриллы пребывают в сокращенном состоянии. Чтобы миофибриллы расслабились, кальции должен обратно вернуться в саркоплазматическую сеть. Но такой транспорт приходится осуществлять вопреки действию огромного концентрационного градиента (в СПС кальция много, в саркоплазме мало). Следовательно, расслабление миофибрилл в миоците скелетных мышц после их сокращения невозможно без участия системы активного транспорта — кальциевой помпы (рисунок 6, В). Ее работа — неотъемлемый элемент сократительного процесса в мышце. Из мембраны СПС выделена Са-активируемая АТФаза, которая служит основным компонентом кальциевого насоса.

Хемомеханический этап мышечного сокращения

В покое, когда ионов Ca мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательно заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca:

Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (фосфорная кислота, связывающая Са++, молочная кислота и др.), оказывающие угнетающее действие на работоспособность мышцы. Часть этих продуктов, а также ионы Са диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее действие на способность возбудимой мембраны генерировать ПД. Так, если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы.

Механизм мышечного сокращения

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°. Согласно современным представ­лениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Электромеханическое сопряжение в мышцах

3.Для определения механических свойств костной ткани была взятапластинка из свода черепа со следующими размерами: длина L = 5 см, ширина b = 1 см, толщина h = 0,5 см. Под действием силы F = 200 Н пластинка удлинилась на ∆L = 1,2∙10 -3 см. Определите по этим данным модуль Юнга костной ткани при деформации растяжения.

Таким образом, в кардиомиоците электромеханическое сопряжение идет в две ступени: вначале небольшой входящий поток кальция активирует мембраны СР, способствуя большему выбросу кальция из внутриклеточного депо, а затем в результате этого выброса происходит сокращение саркомера. Заметим, что описанный выше двухступенчатый процесс сопряжения доказан экспериментально.

Электро-механическое сопряжение в сердечной мышце

Этап 2. Гидролиз АТФ . Расщепление АТФ на АДФ и неорганический фосфат (Ф) происходит в головке миозина, продукты гидролиза остаются в миозине. В результате гидролиза головка миозина “распрямляется”, т.е. располагается перпендикулярно или под углом 90 0 относительно толстых и тонких нитей. Это движение приводит к тому, что кончик нити миозина продвигается на 11 нм вдоль нити актина и головка миозина оказывается против нового мономера актина. Если все поперечные мостики находятся в таком состоянии — мышца расслаблена.

2. Сердечные гликозиды. Производные дигиталиса способны ингибировать Na-K насос плазматической мембраны и, следовательно, повышать уровень внутриклеточного Na + ( i). В результате происходит замедление Na-Са обмена, повышение уровня [Са 2+ ] i и увеличение сократимости. Недавние исследования выявили новый механизм действия сердечных гликозидов — через увеличение проницаемости Na + -каналов плазматической мембраны для ионов Са 2+.

Нервно-мышечная физиология

Квантовая гипотеза освобождения медиатора. Постсинаптические потенциалы, вызванные раздражением двигательного нерва (потенциалы концевой пластинки — ПКП), от раздражения к раздражению варьируют по амплитуде, причем эти колебания кратны амплитуде МПКП. Было предположено, что медиатор в синапсе освобождается в виде мультимолекулярных порций — квантов. В покое случайное освобождение из нервного окончания отдельных порций вызывает появление на постсинаптической мембране МПКП, а в ответ на раздражение происходит синхронное освобождение нескольких десятков или сот квантов и возникает ПКП. Электрофизиологическое определение показало, что квант медиатора состоит из 1000-10 000 молекул ацетилхолина.

Комедиаторы — это сопутствующие синаптические посредники, характеризующиеся прежде всего совместной локализацией, совместным высвобождением и общей клеткой-мишенью. Под совместной локализацией понимается синтез и депонирование медиаторов в одном и том же нейроне, их происхождение в одних и тех же пресинаптических окончаниях, но не обязательно в одних и тех же пузырьках. Под совместным высвобождением понимается экзоцитоз двух (и более) медиаторов, в результате одной и той же активации пресинаптического окончания, под которым в данном случае подразумевается не одиночный пресинаптический потенциал действия, а разряд потенциалов действия с одной и той же частотой.

Механизм электромеханического сопряжения теория скольжения роль ионов кальция

Такой механизм активации обусловлен действием Са 2+ на тропонин, который работает как «кальциевый переключатель»: при связывании с Са 2+ его молекула деформируется таким образом, что как бы заталкивает тропомиозин в желобок между двумя цепочками актиновых мономеров, т. е. в «активированное положение».

У гладкомышечных клеток веретеновидная форма, длина примерно 50–400 мкм и толщина 2–10 мкм. Соединенные особыми межклеточными контактами (десмосомами), они образуют сеть с вплетенными в нее коллагеновыми волокнами. Из–за нерегулярного распределения миозиновых и актиновых нитей эти клетки лишены поперечной полосатости, характерной для сердечной и скелетной мускулатуры. Они также укорачиваются за счет скольжения миофиламентов относительно друг друга, но скорости скольжения и расщепления АТФ здесь в 100–1000 раз ниже, чем в поперечнополосатых мышцах. В связи с этим гладкие мышцы особенно хорошо приспособлены для длительного устойчивого сокращения, не приводящего к утомлению и значительным энергозатратам. Сократительное напряжение на единицу площади поперечного сечения у гладких и скелетных мышц часто одинаково (30–40 Н/см 2), и при длительном сокращении они могут удерживать одинаковую нагрузку. Однако энергия, расходуемая при этом гладкой мышцей, если оценивать по потреблению O 2 , в 100–500 раз меньше .

Биология и медицина

Отдельную систему составляют поперечные трубочки (T-трубочки) , которые пересекают мышечное волокно на границе A-дисков и I-дисков, проходят между латеральными цистернами двух смежных саркомеров и выходят на поверхность волокна, составляя единое целое с плазматической мембраной. Просвет Т-трубочки заполнен внеклеточной жидкостью, окружающей мышечное волокно. Ее мембрана, как и плазматическая, способна к проведению потенциала действия. Возникнув в плазматической мембране, потенциал действия быстро распространяется по поверхности волокна и мембране Т-трубочек в глубь клетки. Достигнув области Т-трубочек, прилегающих к латеральным цистернам, потенциал действия активирует потенциалзависимые «воротные» белки их мембраны, физически или химически сопряженные с кальциевыми каналами мембраны латеральных цистерн. Таким образом, деполяризация мембраны Т-трубочек. обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных цистерн, содержащих Са2+ в высокой концентрации, и ионы Са2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са2+ обычно бывает достаточным для активации всех поперечных мостиков мышечного волокна.

Процесс сокращения продолжается, пока ионы Са2+ связаны с тропонином, т.е. до тех пор, пока их концентрация в цитоплазме не вернется к исходному низкому значению. Мембрана саркоплазматического ретикулума содержит Са2+-АТФазу — интегральный белок, осуществляющий активный транспорт Са2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Са2+ высвобождается из ретикулума в результате распространения потенциала действия по Т-трубочкам; для его возвращения в ретикулум нужно гораздо больше времени, чем для выхода. Поэтому повышенная концентрация Са2+ в цитоплазме сохраняется в течение некоторого времени и сокращение мышечного волокна продолжается после завершения потенциала действия.

МЕХАНИЗМ СОКРАЩЕНИЯ МЫШЕЧНОГО ВОЛОКНА

3. Происходит процесс электромеханического сопряжения: он представляет собой преобразование электрического потенциала действия в механическое «скольжение» протофибрилл по отношению друг к другу. Этот процесс происходит в несколько этапов с обязательным посредством ионов кальция!

Хранение и высвобождение ионов кальция. В состоянии расслабления мышца содержит более 1 мкмоль Са на 1 г сырого веса . Если бы соли Са не были изолированы в особых внутриклеточных хранилищах, обогащенные кальцием мышечные волокна находились бы в состоянии непрерывного сокращения. Структура внутриклеточных систем хранения кальция следующая: во многих участках мембрана мышечной клетки углубляется внутрь волокна, перпендикулярно его продольной оси, образуя трубки; эта система поперечных трубочек (Т-система) соединяется с внеклеточной средой. Перпендикулярно Т-системе, т.е. параллельно миофибриллам, расположена система продольных трубочек (истинный саркоплазматический ретикулум). Пузырьки на концах этих трубочек, терминальные цистерны , находятся очень близко к мембранам поперечной системы, образуя триады. В этих пузырьках и хранится внутриклеточный Са 2+ . В отличие от поперечной системы продольная система не соединяется с окружающей средой.

24 Авг 2018 495

Электромеханическое сопряжение - это последовательность процессов, в результате которых потенциал действия плазматической мембраны мышечного волокна приводит к запуску цикла поперечных мостиков . Плазматическая мембрана скелетных мышц электрически возбудима и способна генерировать распространяющийся потенциал действия посредством механизма, аналогичного тому, который действует в нервных клетках (см. " Проведение возбуждения между клетками ". Потенциал действия в волокне скелетной мышцы длится 1-2 мс и заканчивается раньше, чем появятся какие-либо признаки механической активности ( рис. 30.14). Начавшаяся механическая активность может продолжаться более 100 мс. Электрическая активность плазматической мембраны не оказывает прямого влияния на сократительные белки, а вызывает повышение цитоплазматической концентрации ионов Са2+, которые продолжают активировать сократительный аппарат и после прекращения электрического процесса.

В состоянии покоя в мышечном волокне концентрация свободного ионизированного Са2+ в цитоплазме вокруг толстых и тонких филаментов очень низка, около одной десятимиллионной доли моля/л. При такой низкой концентрации ионы Са2+ занимают очень небольшое количество участков связывания на молекулах тропонина, поэтому тропомиозин блокирует активность поперечных мостиков . После потенциала действия концентрация ионов Са2+ в цитоплазме быстро возрастает, и они связываются с тропонином , устраняя блокирующий эффект тропомиозина и инициируя цикл поперечных мостиков. Источником поступления Са2+ в цитоплазму является саркоплазматический ретикулум мышечного волокна.

Саркоплазматический ретикулум мышц гомологичен эндоплазматическому ретикулуму других клеток. Он располагается вокруг каждой миофибриллы наподобие "рваного рукава", сегментами которого окружены A-диски и I-диски ( рис. 30.15). Концевые части каждого сегмента расширяются в виде так называемых латеральных цистерн , соединенных друг с другом серией более тонких трубок. В латеральных цистернах депонируется Са2+; после возбуждения плазматической мембраны он высвобождается.

Отдельную систему составляют поперечные трубочки (T-трубочки) , которые пересекают мышечное волокно на границе A-дисков и I-дисков , проходят между латеральными цистернами двух смежных саркомеров и выходят на поверхность волокна, составляя единое целое с плазматической мембраной. Просвет Т-трубочки заполнен внеклеточной жидкостью, окружающей мышечное волокно. Ее мембрана, как и плазматическая, способна к проведению потенциала действия. Возникнув в плазматической мембране, потенциал действия быстро распространяется по поверхности волокна и мембране Т-трубочек в глубь клетки. Достигнув области Т-трубочек, прилегающих к латеральным цистернам, потенциал действия активирует потенциалзависимые "воротные" белки их мембраны, физически или химически сопряженные с кальциевыми каналами мембраны латеральных цистерн. Таким образом, деполяризация мембраны Т-трубочек. обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных цистерн, содержащих Са2+ в высокой концентрации, и ионы Са2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са2+ обычно бывает достаточным для активации всех поперечных мостиков мышечного волокна.

Процесс сокращения продолжается, пока ионы Са2+ связаны с тропонином , т.е. до тех пор, пока их концентрация в цитоплазме не вернется к исходному низкому значению. Мембрана саркоплазматического ретикулума содержит Са2+-АТФазу - интегральный белок, осуществляющий активный транспорт Са2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Са2+ высвобождается из ретикулума в результате распространения потенциала действия по Т-трубочкам ; для его возвращения в ретикулум нужно гораздо больше времени, чем для выхода. Поэтому повышенная концентрация Са2+ в цитоплазме сохраняется в течение некоторого времени и сокращение мышечного волокна продолжается после завершения потенциала действия.

Подведем итог. Сокращение обусловлено высвобождением ионов Са2+, хранящихся в саркоплазматическом ретикулуме; когда Са2+ поступает обратно в ретикулум, сокращение заканчивается и начинается расслабление ( рис. 30.16). Источником энергии для кальциевого насоса служит АТФ - это одна из трех его главных функций в мышечном сокращении (

При активации гладкомышечной клетки ионы кальция могут входить в через дигидропиридин-чувствительные, потенциал-зависимые кальциевые каналы L- типа, которые располагаются в кавеолах – инвагинациях плазматической мембраны, контактирующих с саркоплазматическим ретикулумом. Кальциевые потенциал-зависимые каналы L- типа также активируются в ответ на растяжение мембраны, и результатом является деполяризация мембраны. Концентрация Са 2+ во внеклеточной жидкости приблизительно в 10 000 раз больше, чем в саркоплазме. Поэтому ионы Са 2+ довольно быстро входят в клетку через Са 2+ каналы. Небольшие размеры гладкомышечной клетки создают благоприятные условия для быстрой диффузии ионов Са 2+ к внутриклеточным участкам связывания. В дальнейшем ионы Са 2+ инициируют выход Са 2+ из депо – саркоплазматического ретикулума и активацию процесса сокращения гладкой мышцы. Для некоторых гладкомышечных клеток, например, составляющих мышечную стенку артериол, вход ионов Са 2+ через потенциал-зависимые Са 2+ -каналы определяет уровень внутриклеточной концентрации ионов Са 2+ . Для других типов гладких мышц этот путь повышения концентрации ионов Са 2+ в саркоплазме не существенен. Потенциал действия может также быть вызван активацией быстрых потенцал-зависимых Na + -каналов, например vas deferens мыши .

Са 2+ -вызванное освобождение Са 2+ из саркоплазматического ретикулума играет основную роль в электромеханическом сопряжении и в сердечной мышце, где наблюдается большое количество L–типа Са 2+ каналов, тесно прилегающих к Са 2+ каналам саркоплазматического ретикулума. Ионы Са 2+ из саркоплазматического ретикулума выходят через ионные каналы, которые активируются рианодиновыми рецепторами . Впервые рианодиновые рецепторы были обнаружены в скелетной мышце и название свое получили от названия антагониста, алкалоида растительного происхождения, рианодина. Причем, в низких концентрациях рианодин способен активировать Са 2+ канал рианодинового рецептора, а в высоких – вызывает его блокаду .

В гладкой мышце взаимоотношения между плазматической мембраной и саркоплазматическим ретикулумом не настолько четко организованы, как в скелетной и в сердечной мышце. Однако в гладкой мышце имеются электронно-плотные участки (мостики), размером около 20 нм. В этих участках ко-локализованы дигидропиридиновые рецепторы плазматической мембраны и рианодиновые рецепторы саркоплазматического ретикулума. Были идентифицированы и клонированы три различных типа рианодиновых рецепторов: тип RyR1 обнаружен в скелетных мышцах, тип RyR2 – в мышцах сердца. Считается, что в гладкой мышце присутствует RyR3 изоформа рианодиновых рецепторов . Рецептор к рианодину представляет из себя тетрамерный комплекс, состоящий из мономеров (трансмембранных полипептидов) с молекулярной массой 500 кДа. Рианодиновые рецепторы гладких мышц активируются микромолярной внутриклеточной концентрацией ионов Са 2+ и кофеином. Ингибируются рианодиновые рецепторы ионами Mg 2+ и рутением красным. При взаимодействии с ионами Са 2+ комплекс рианодинового рецептора образует кальций-активируемый Са 2+ канал, через который ионы Са 2+ выходят из саркоплазматического ретикулума в саркоплазму. Проводимость ионного канала рианодинового рецептора для ионов Са 2+ в гладкомышечной клетке сопоставима с проводимостью ионного канала рианодинового рецептора в скелетной и сердечной мышце. Однако, плотность рианодиновых рецепторов в гладкой мышце значительно ниже плотности в других мышечных тканях .



Выход ионов Са 2+ из саркоплазматического ретикулума в саркоплазму носит локальный характер. Это местное и довольно значительное повышение концентрации ионов Са 2+ называется Са 2+ -спарк. Вход ионов Са 2+ через Са 2+ -каналы плазматической мембраны и Са 2+ -спарки повышают общую «глобальную» внутриклеточную концентрацию ионов Са 2+ , что инициирует процесс сокращения гладкой мышцы. Это – электромеханический путь сопряжения процессов возбуждения и сокращения .

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!